Sparse Vector Linear Prediction with Optimal Structures

نویسندگان

  • Davorka Petrinović
  • Davor Petrinović
چکیده

A modification of a classical Vector Linear Prediction (VLP) technique is proposed in this paper, enabling significant reduction in complexity. The proposed sparse VLP technique (sVLP) is based on predictors with reduced number of nonzero elements. For a given input vector process, a design procedure for obtaining optimal sparse predictor structures and matrix elements is described. The effectiveness of the sVLP is evaluated on interframe predictive coding of Line Spectrum Frequencies (LSF) and compared to the classical VLP based on Switched-Adaptive Interframe Prediction scheme. The loss of the prediction gain due to sparse structures is calculated using various design parameters. Simulation results prove that a 6-fold reduction in complexity of prediction can be achieved causing only insignificant loss of the prediction gain and coder performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation

This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...

متن کامل

PREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION

Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...

متن کامل

Sparse Bayesian Learning for Identifying Imaging Biomarkers in AD Prediction

We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer's disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse m...

متن کامل

New Optimal Observer Design Based on State Prediction for a Class of Non-linear Systems Through Approximation

This paper deals with the optimal state observer of non-linear systems based on a new strategy. Despite the development of state prediction in linear systems, state prediction for non-linear systems is still challenging. In this paper, to obtain a future estimation of the system states, initially Taylor series expansion of states in their receding horizons was achieved to any specified order an...

متن کامل

Prediction of ultimate strength of shale using artificial neural network

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000